Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (2024)

Andrea Bierema

Learning Objectives

Students will be able to:

  • Describe the structure and purpose of DNA and RNA.
  • Describe the general process of protein synthesis.
  • Describe the molecular anatomy of genes and genomes.
  • Identify DNA and mRNA bases and binding patterns.
  • Interpret a codon-amino acid chart.
  • Given a DNA sequence, determine the corresponding mRNA sequence and amino acid sequence.

What is a Gene?

The gene is the basic physical unit of inheritance. Genes are passed from parents to offspring and contain the information needed to specify traits. Genes are arranged, one after another, on structures called chromosomes. A chromosome contains a single, long DNA molecule- only a portion of which corresponds to a single gene- as well as the structural proteins (called histones) that the DNA molecule wraps around. Humans have approximately 20,000 genes arranged on their chromosomes. Watch the following brief video for an animated view of the relationship between chromosomes and genes.

Central Dogma

The central dogma of molecular biology is that DNA codes for RNA and RNA codes for protein. In addition to DNA coding for RNA, much of the DNA regulates the synthesis of RNA- which ultimately means that it regulates the synthesis of protein. We will learn about gene regulation in later chapters.

Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (1)

Because proteins are coded by genes, the term “gene expression” refers to protein synthesis (i.e., making proteins), including the regulation of that synthesis.

There are two main processes that must occur to synthesize proteins: transcription and translation. During the process of transcription—which occurs in the nucleus—an mRNA molecule is created by reading the DNA. Note that DNA never “becomes” RNA; rather, the DNA is “read” to make an RNA molecule. The mRNA leaves the nucleus and then, through the process of translation, the mRNA is read to create an amino acid sequence that folds into a protein.

Transcription occurs in the nucleus and translation occurs outside of the nucleus at the ribosomes (which are either in the cytoplasm or attached to the rough endoplasmic reticulum. Below is a micrograph image that was taken of this area and the other is a cartoon representation.

Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (2)
Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (3)

Consider what the terms “transcribe” and “translate” mean in relation to language. To “transcribe” something means to rewrite text again in the same language while to “translate” something means to rewrite the text in a different language. Similar to these meanings, in biology, DNA is transcribed into RNA: both DNA and RNA are made of nucleic acid (i.e., the same “language”). With the assistance of proteins, DNA is “read” and transcribed into an mRNA sequence. To read RNA and create protein, though, we refer to it as being translated: RNA is made of nucleic acid, and protein is made of amino acids (i.e., different “languages”). Therefore, DNA is transcribed to create an mRNA sequence, and then the mRNA sequence is translated to make a protein.

DNA and RNA

The two main types of nucleic acids aredeoxyribonucleic acid (DNA)andribonucleic acid (RNA). As described earlier in this chapter, DNA is the genetic material in all living organisms, ranging from single-celled bacteria to multicellular mammals. It is in the nucleus of eukaryotes and in the organelles mitochondria and chloroplasts. In prokaryotes, the DNA is not enclosed in a membranous envelope.

The cell’s entire genetic content is its genome, and the study of genomes is genomics. In eukaryotic cells but not in prokaryotes, a DNA molecule may contain tens of thousands of genes. Many genes contain information to make protein products (e.g., mRNA). Other genes code for RNA products. DNA controls all of the cellular activities by turning the genes “on” or “off.”

The other type of nucleic acid, RNA, is mostly involved in protein synthesis. The DNA molecules never leave the nucleus but instead use an intermediary molecule to communicate with the rest of the cell. This intermediary is the messenger RNA (mRNA). Other types of RNA—like rRNA, tRNA, and microRNA—are involved in protein synthesis and its regulation.

DNA and RNA are comprised of monomers that scientists callnucleotides. The nucleotides combine with each other to form apolynucleotide, DNA or RNA. Three components comprise each nucleotide: a nitrogenous base, a pentose (five-carbon) sugar, and a phosphate group. Each nitrogenous base in a nucleotide is attached to a sugar molecule, which is attached to one or more phosphate groups. Therefore, although the terms “base” and “nucleotide” are sometimes used interchangeably, a nucleotide contains a base as well as part of the sugar-phosphate backbone.

Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (4)

Comparison of RNA (left molecule) and DNA (right molecule). The color of the bases in RNA and DNA aligns with the colored boxes next to each base molecule.

Exercises

Examine the image above and then answer the following questions:

Protein Synthesis Overview

The two main processes in protein synthesis are transcription and translation. The following is an overview of each of these processes. Each process will be described in more detail in future chapters. Note that the rest of this textbook will focus on what happens in eukaryotic cells. Please see this page by Lumen for details on prokaryotic gene expression.

Transcription

A gene is complex: it contains not only the code for the resulting protein but also several regulatory factors that determine if and when the region that codes for a protein are read to create protein. What follows is a diagram of the components of a gene that are used in transcription.

This textbook focuses on the DNA and the ending product of transcription: mRNA.

Exercise

Given a specific DNA strand, what is the sequence of the resulting mRNA molecule? We will learn about how mRNA is created in a later chapter.

Translation

Translation involves different types of RNA, and we will explain them in more detail in later chapters: rRNA, tRNA, mRNA, and microRNA.

After an mRNA is created, it leaves the nucleus and is attracted to or attracts a ribosome, which is a molecule made of rRNA and polypeptides. Then, in the ribosome, and with the assistance of tRNAs, the mRNA is read and an amino acid sequence is created.

DNA and mRNA create sequences with just four types of bases; yet, these bases code for 20 unique amino acids (the makeup of protein). How is this possible? Watch the following video to find out!

For closed captioning or to view the full transcript see the video on YouTube. Or click on the “YouTube” link in the video.

The mRNA is read in sets of three bases known as codons. Each codon codes for a single amino acid. In this way, the mRNA is read and the protein product is made.

Below is a table showing which codons code for which bases.

Codon Chart

CodonAmino Acid
UUUPhenylalanine (Phe)
UUCPhenylalanine (Phe)
UUALeucine (Leu)
UUGLeucine (Leu)
CUULeucine (Leu)
CUCLeucine (Leu)
CUALeucine (Leu)
CUGLeucine (Leu)
AUUIsoleucine (Ile)
AUCIsoleucine (Ile)
AUAIsoleucine (Ile)
AUGMethionine (Met)
GUUValine (Val)
GUAValine (Val)
GUGValine (Val)
UCUSerine (Ser)
UCCSerine (Ser)
UCASerine (Ser)
UCGSerine (Ser)
CCUProline (Pro)
CCCProline (Pro)
CCAProline (Pro)
CCGProline (Pro)
ACUThreonine (Thr)
ACCThreonine (Thr)
ACAThreonine (Thr)
ACGThreonine (Thr)
GCUAlanine (Ala)
GCCAlanine (Ala)
GCAAlanine (Ala)
GCGAlanine (Ala)
UAAStop (not an amino acid)
UAGStop (not an amino acid)
CAUHistidine (His)
CACHistidine (His)
CAAGlutamine (Gln)
CAGGlutamine (Gln)
AAUAsparagine (Asn)
AACAsparagine (Asn)
AAALysine (Lys)
AAGLysine (Lys)
GAUAspartic Acid (Asp)
GACAspartic Acid (Asp)
GAAGlutamic Acid (Glu)
UAUTyrosine (Tyr)
UACTyrosine (Tyr)
UGUCysteine (Cys)
UGCCysteine (Cys)
UGAStop (not an amino acid)
UGGTryptophan (Trp)
CGUArginine (Arg)
CGCArginine (Arg)
CGAArginine (Arg)
CGGArginine (Arg)
AGUSerine (Ser)
AGCSerine (Ser)
AGAArginine (Arg)
AGGArginine (Arg)
GGUGlycine (Gly)
GGCGlycine (Gly)
GGAGlycine (Gly)
GGGGlycine (Gly)

Codon chart of triplet mRNA base codes and corresponding amino acids.

The following are two representations of the information in the above table; move to the next slide for the second representation. These representations are commonly used in biology textbooks.

These charts can be a little confusing at first. Watch the following video to learn how to interpret both chart formats.

Exercise

Conclusion

This chapter focused on DNA, mRNA, and protein sequences. The next several chapters describe gene expression processes- both protein synthesis and regulation of that synthesis. Master how sequences are read during protein synthesis (the focus of the current chapter) before moving on to the next chapter. Below are some sources to help further your understanding!

Example

Check out Learn.Genetics’ “How a Firefly’s Tail Makes Light” video for an overview of protein synthesis!

Exercises

Need a little more practice?

Try out Learn.Genetics’ “Transcribe and Translate a Gene” and The Concord Consortium’s “DNA to Protein” interactives for further practice!

Attributions

This chapter is a modified derivative of the following articles:

Gene” by National Human Genome Research Institute, National Institutes of Health, Talking Glossary of Genetic Terms.

“Nucleic Acids” by OpenStax College,Biology 2e, CC BY 4.0. Download the original article at https://openstax.org/books/biology-2e/pages/3-5-nucleic-acids

Gene Expression Overview – An Interactive Introduction to Organismal and Molecular Biology, 2nd ed. (2024)

FAQs

What is gene expression answers? ›

This is a process where the gene's genetic codes are used in managing the protein synthesis that is required for our body to produce the cell structures. Genes that carry information required for the sequences of amino acids are termed structural genes.

What is the overview of gene expression? ›

Gene expression is the process by which the information encoded in a gene is turned into a function. This mostly occurs via the transcription of RNA molecules that code for proteins or non-coding RNA molecules that serve other functions.

What is gene expression quizlet Chapter 14? ›

Gene expression. The process by which information encoded in DNA directs the synthesis of proteins or, in some cases, RNAs that are not translated into proteins and instead function as RNAs.

What is gene expression quizlet Chapter 17? ›

Gene expression is the process by which DNA directs the synthesis of proteins. Original DNA is first copied into mRNA by transcription.

How do you study gene expression? ›

In addition to Northern blot tests and SAGE analyses, there are several other techniques for analyzing gene expression. Most of these techniques, including microarray analysis and reverse transcription polymerase chain reaction (RT-PCR), work by measuring mRNA levels.

What is the main purpose of gene expression? ›

Gene expression is the process our cells use to convert the instructions in our DNA into a functional product, such as a protein. Our DNA stores the information our cells need to function. It is organised into small sections, called genes, which contain instructions for making a specific product, usually a protein.

What is the main goal of gene expression? ›

Goal of gene expression The overall goal of gene expression is to make Muliple Choice a structural protein that can be used by the cell. MRNA that can be passed on to the next generation. a copy of the gene that can be used by the cell.

What is an example of a gene expression? ›

Some simple examples of where gene expression is important are: Control of insulin expression so it gives a signal for blood glucose regulation. X chromosome inactivation in female mammals to prevent an "overdose" of the genes it contains. Cyclin expression levels control progression through the eukaryotic cell cycle.

What is gene expression quizlet? ›

Gene expression. The process by which the genetic code - the nucleotide sequence - of a gene is used to direct protein synthesis and produce the structures of the cell.

What does gene expression result in quizlet? ›

The final product of translation, and gene expression, is a protein.

What is the physical expression of a gene's trait known as the ______? ›

Phenotype

Phenotype refers to an individual's observable traits, such as height, eye color and blood type. A person's phenotype is determined by both their genomic makeup (genotype) and environmental factors.

What is gene expression chapter 17? ›

Gene expression is the process by which DNA directs the synthesis of proteins (or, in some cases, just RNAs). The expression of genes that code for proteins includes two stages: transcription and translation.

What are the major steps of gene expression quizlet? ›

  • chromosome changes. - DNA unpacking.
  • control of transcription. - regulatory proteins and control sequences.
  • control of RNA processing. - addition of cap and tail.
  • splicing.
  • flow through nuclear envelope.
  • breakdown of mRNA.
  • control of translation.
  • control after translation. - cleavage/modification/activation of proteins.

Which best describes gene expression quizlet? ›

Of the following which best explains the term gene expression? The production of proteins based on the genetic information in DNA.

What is a gene expression example? ›

Some simple examples of where gene expression is important are: Control of insulin expression so it gives a signal for blood glucose regulation. X chromosome inactivation in female mammals to prevent an "overdose" of the genes it contains. Cyclin expression levels control progression through the eukaryotic cell cycle.

What makes gene expression? ›

The journey from gene to protein is complex and tightly controlled within each cell. It consists of two major steps: transcription and translation. Together, transcription and translation are known as gene expression.

Top Articles
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 6226

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.